Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
نویسندگان
چکیده
Optical tweezers provide a versatile tool in biological and physical researches. Optical tweezers based on optical fibers are more flexible and ready to be integrated when compared with those based on microscope objectives. In this paper, the three-dimensional (3D) trapping ability of an inclined dual-fiber optical tweezers is demonstrated. The trapping efficiency with respect to displacement is experimentally calibrated along two dimensions. The system is studied numerically using a modified ray-optics model. The spring constants obtained in the experiment are predicted by simulations. It is found both experimentally and numerically that there is a critical value for the fiber inclination angle to retain the 3D trapping ability. The inclined dual-fiber optical tweezers are demonstrated to be more robust to z-axis misalignment than the counter-propagating fiber optical tweezers, which is a special case of th former when the fiber inclination angle is 90 masculine. This inclined dual-fiber optical tweezers can serve as both a manipulator and a force sensor in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
منابع مشابه
Multiple traps created with an inclined dual-fiber system.
Multiple optical traps allow one to manipulate multiple particles simultaneously, to characterize interactions in colloidal systems, and to assemble particles into complex structures. Most of the current multiple optical traps are realized with microscope objective-based optical tweezers, which are bulky in size. In this article, we created multiple optical traps with an inclined dual-fiber opt...
متن کاملTapered Optical Fiber Coated with ZnO Nanorods for Detection of Ethanol Concentration in Water
This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stro...
متن کاملSimultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection.
Multiple-beam optical traps facilitate advanced trapping geometries and exciting discoveries. However, the increased manipulation capabilities come at the price of more challenging position and force detection. Due to unrivaled bandwidth and resolution, photodiode based detection is preferred over camera based detection in most single/dual-beam optical traps assays. However, it has not been tri...
متن کاملInvestigation of geometric parameters of seawalls on the amount of earth subsidence and its horizontal displacement by FLAC 3D software
Seawalls are built for Protecting of beaches against waves and preventing the progression of water to the beach. For a proper understanding about these constructions, a suiTable information about applied loads on these constructions should be existed. One of the important load that applied on these constructions is sea wave. Others loads are included: weight force of the walls, weight force of ...
متن کاملSurface plasmon optical tweezers: tunable optical manipulation in the femtonewton range.
We present a quantitative analysis of 2D surface plasmon based optical tweezers able to trap microcolloids at a patterned metal surface under low laser intensity. Photonic force microscopy is used to assess the properties of surface plasmon traps, such as confinement and stiffness, revealing stable trapping with forces in the range of a few tens of femtonewtons. We also investigate the specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 16 شماره
صفحات -
تاریخ انتشار 2009